Dynamic classification for video stream using support vector machine
نویسندگان
چکیده
منابع مشابه
Dynamic classification for video stream using support vector machine
A dynamic classification using the support vectormachine (SVM) technique is presented in this paper as a new ‘incremental’ framework formultiple-classifying video stream data. The contribution of this study is the derivation of a unique, fast and simple to implement technique that allows multi-classification of behavioral motions based on an adaptation of the least-square SVM (LS-SVM) formulati...
متن کاملUsing Wavelet Support Vector Machine for Fault Diagnosis of Gearboxes
Identifying fault categories, especially for compound faults, is a challenging task in mechanical fault diagnosis. For this task, this paper proposes a novel intelligent method based on wavelet packet transform (WPT) and multiple classifier fusion. An unexpected damage on the gearbox may break the whole transmission line down. It is therefore crucial for engineers and researchers to monitor the...
متن کاملPattern Classification Using Support Vector Machine Ensemble
While the support vector machine (SVM) can provide a good generalization performance, the classification result of the SVM is often far from the theoretically expected level in practical implementation because they are based on approximated algorithms due to the high complexity of time and space. To improve the limited classification performance of the real SVM, we propose to use an SVM ensembl...
متن کاملFish Classification Using Support Vector Machine
Fish recognition is presently a very complex and difficult task despite its commercial and agricultural usefulness. Some of the challenges facing accurate and reliable fish recognition include distortion, noise, segmentation error, overlap and occlusion. Several techniques, which include K-Nearest Neighbor (KNN), K-mean Clustering and Neural Network, have been widely used to resolve these chall...
متن کاملClassification of Arrhythmias Using Support Vector Machine
Detection of ventricular fibrillation (VF) and hasty ventricular tachycardia (VT) is crucial for the success of the defibrillation analysis. The algorithm that combines ECG parameters with Multicast SVM to categorize VF/shockable arrhythmias has been offered. The multicast SVM learning algorithms can increase the effectiveness for the exposure of lifethreatening arrhythmias. FS methods might he...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Soft Computing
سال: 2008
ISSN: 1568-4946
DOI: 10.1016/j.asoc.2007.11.008